skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cai, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graph Transformer (GT) recently has emerged as a new paradigm of graph learning algorithms, outperforming the previously popular Message Passing Neural Network (MPNN) on multiple benchmarks. Previous work shows that with proper position embedding, GT can approximate MPNN arbitrarily well, implying that GT is at least as powerful as MPNN. In this paper, we study the inverse connection and show that MPNN with virtual node (VN), a commonly used heuristic with little theoretical understanding, is powerful enough to arbitrarily approximate the self-attention layer of GT. In particular, we first show that if we consider one type of linear transformer, the so-called Performer/Linear Transformer, then MPNN+ VN with only depth and width can approximate a self-attention layer in Performer/Linear Transformer. Next, via a connection between MPNN+ VN and DeepSets, we prove the MPNN+ VN with width and depth can approximate the self-attention layer arbitrarily well, where is the input feature dimension. Lastly, under some assumptions, we provide an explicit construction of MPNN+ VN with width and depth approximating the self-attention layer in GT arbitrarily well. On the empirical side, we demonstrate that 1) MPNN+ VN is a surprisingly strong baseline, outperforming GT on the recently proposed Long Range Graph Benchmark (LRGB) dataset, 2) our MPNN+ VN improves over early implementation on a wide range of OGB datasets and 3) MPNN+ VN outperforms Linear Transformer and MPNN on the climate modeling task. 
    more » « less
  2. Abstract Radiogenic neutrons emitted by detector materials are one of the most challenging backgrounds for the direct search of dark matter in the form of weakly interacting massive particles (WIMPs). To mitigate this background, the XENONnT experiment is equipped with a novel gadolinium-doped water Cherenkov detector, which encloses the xenon dual-phase time projection chamber (TPC). The neutron veto (NV) can tag neutrons via their capture on gadolinium or hydrogen, which release$$\gamma $$ γ -rays that are subsequently detected as Cherenkov light. In this work, we present the first results of the XENONnT NV when operated with demineralized water only, before the insertion of gadolinium. Its efficiency for detecting neutrons is$$({82\pm 1}){\%}$$ ( 82 ± 1 ) % , the highest neutron detection efficiency achieved in a water Cherenkov detector. This enables a high efficiency of$$({53\pm 3}){\%}$$ ( 53 ± 3 ) % for the tagging of WIMP-like neutron signals, inside a tagging time window of$${250}~{\upmu }\hbox {s}$$ 250 μ s between TPC and NV, leading to a livetime loss of$${1.6}{\%}$$ 1.6 % during the first science run of XENONnT. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. We report on a blinded search for dark matter with single- and few-electron signals in the first science run of XENONnT relying on a novel detector response framework that is physics model dependent. We derive 90% confidence upper limits for dark matter-electron interactions. Heavy and light mediator cases are considered for the standard halo model and dark matter up-scattered in the Sun. We set stringent new limits on dark matter-electron scattering via a heavy mediator with a mass within 10 20 MeV / c 2 and electron absorption of axionlike particles and dark photons for m χ below 0.03 keV / c 2 . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  4. We search for dark matter (DM) with a mass [ 3 , 12 ] GeV / c 2 using an exposure of 3.51 tonne year with the XENONnT experiment. We consider spin-independent DM-nucleon interactions mediated by a heavy or light mediator, spin-dependent DM-neutron interactions, momentum-dependent DM scattering, and mirror DM. Using a lowered energy threshold compared to the previous weakly interacting massive particle search, a blind analysis of [0.5, 5.0] keV nuclear recoil events reveals no significant signal excess over the background. XENONnT excludes spin-independent DM-nucleon cross sections > 2.5 × 10 45 cm 2 at 90% confidence level for 6 GeV / c 2 DM. In the considered mass range, the DM sensitivity approaches the “neutrino fog,” the limitation where neutrinos produce a signal that is indistinguishable from that of light DM-xenon nucleus scattering. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  5. We present the first measurement of nuclear recoils from solar B 8 neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9 t sensitive liquid xenon target. A blind analysis with an exposure of 3.51 t × yr resulted in 37 observed events above 0.5 keV, with ( 26.4 1.3 + 1.4 ) events expected from backgrounds. The background-only hypothesis is rejected with a statistical significance of 2.73 σ . The measured B 8 solar neutrino flux of ( 4.7 2.3 + 3.6 ) × 10 6 cm 2 s 1 is consistent with results from the Sudbury Neutrino Observatory. The measured neutrino flux-weighted CE ν NS cross section on Xe of ( 1.1 0.5 + 0.8 ) × 10 39 cm 2 is consistent with the Standard Model prediction. This is the first direct measurement of nuclear recoils from solar neutrinos with a dark matter detector. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  6. Abstract The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60–80 t capable of probing the remaining weakly interacting massive particle-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials, such an experiment will also be able to competitively search for neutrinoless double beta decay in136Xe using a natural-abundance xenon target. XLZD can reach a 3σdiscovery potential half-life of 5.7 × 1027years (and a 90% CL exclusion of 1.3 × 1028years) with 10 years of data taking, corresponding to a Majorana mass range of 7.3–31.3 meV (4.8–20.5 meV). XLZD will thus exclude the inverted neutrino mass ordering parameter space and will start to probe the normal ordering region for most of the nuclear matrix elements commonly considered by the community. 
    more » « less
    Free, publicly-accessible full text available April 22, 2026
  7. In this work, we expand on the XENON1T nuclear recoil searches to study the individual signals of dark matter interactions from operators up to dimension eight in a chiral effective field theory (ChEFT) and a model of inelastic dark matter (iDM). We analyze data from two science runs of the XENON1T detector totaling 1 t × yr exposure. For these analyses, we extended the region of interest from [ 4.9 , 40.9 ] keV NR to [ 4.9 , 54.4 ] keV NR to enhance our sensitivity for signals that peak at nonzero energies. We show that the data are consistent with the background-only hypothesis, with a small background overfluctuation observed peaking between 20 and 50 keV NR , resulting in a maximum local discovery significance of 1.7 σ for the Vector Vector strange ChEFT channel for a dark matter particle of 70 GeV / c 2 and 1.8 σ for an iDM particle of 50 GeV / c 2 with a mass splitting of 100 keV / c 2 . For each model, we report 90% confidence level upper limits. We also report upper limits on three benchmark models of dark matter interaction using ChEFT where we investigate the effect of isospin-breaking interactions. We observe rate-driven cancellations in regions of the isospin-breaking couplings, leading to up to 6 orders of magnitude weaker upper limits with respect to the isospin-conserving case. Published by the American Physical Society2024 
    more » « less
  8. Abstract The precision in reconstructing events detected in a dual-phase time projection chamber depends on an homogeneous and well understood electric field within the liquid target. In the XENONnT TPC the field homogeneity is achieved through a double-array field cage, consisting of two nested arrays of field shaping rings connected by an easily accessible resistor chain. Rather than being connected to the gate electrode, the topmost field shaping ring is independently biased, adding a degree of freedom to tune the electric field during operation. Two-dimensional finite element simulations were used to optimize the field cage, as well as its operation. Simulation results were compared to$${}^{83\textrm{m}}\hbox {Kr }$$ 83 m Kr calibration data. This comparison indicates an accumulation of charge on the panels of the TPC which is constant over time, as no evolution of the reconstructed position distribution of events is observed. The simulated electric field was then used to correct the charge signal for the field dependence of the charge yield. This correction resolves the inconsistent measurement of the drift electron lifetime when using different calibrations sources and different field cage tuning voltages. 
    more » « less
  9. Abstract The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.9 tonnes of cryogenic liquid xenon (8.5 tonnes total mass in cryostat). The experiment is expected to extend the sensitivity to WIMP dark matter by more than an order of magnitude compared to XENON1T, thanks to the larger active mass and the significantly reduced background, improved by novel systems such as a radon removal plant and a neutron veto. This article describes the XENONnT experiment and its sub-systems in detail and reports on the detector performance during the first science run. 
    more » « less